preloader

+7 (978) 73-00-133

Промеры глубин в гидрографии

ООО “АРГУС” > Промеры глубин

Промеры глубин выполняют для получения материалов, характеризующих подводный рельеф дна водоема. Промерные работы составляют один из важнейших разделов водных изысканий. Они позволяют выявить и нанести на план участка положение глубоких и мелких мест в русле реки. По этим данным разрабатываются необходимые мероприятия для обеспечения судоходных условий. Подводный рельеф дна водоемов на планах изображается в горизонталях или изобатах – линиях равных глубин.

Промеры ведут по линиям, пересекающим водоем на определенном расстоянии друг от друга. Эти линии называются галсами или промерными профилями. По отношению к направлению течения реки галсы бывают поперечными, продольными и косыми. На практике обычно применяются поперечные галсы. Отдельные точки на галсах, в которых измеряются глубины, называются промерными точками. Плановое положение промерных точек служит для составления плана участка реки. Существует несколько способов проложения галсов. На реках поперечные галсы чаще всего прокладывают по береговым створам, а на озерах и водохранилищах – по компасу.

Промерные работы на водоемах осуществляются с помощью специально оборудованного промерного судна, катера или мотолодки. В зависимости от технического оснащения и способа производства работ промерный отряд состоит обычно из 4-6 человек. Часть отряда размещается на промерном судне, управляет его движением и осуществляет измерение глубин. Другая часть с помощью геодезических инструментов, установленных на берегу, производит координирование промеров – определение планового положения промерного судна в момент измерения глубин. Допускается также измерение глубин в зимний период со льда водоема. Однако эти промеры являются наиболее трудоемкими.

При гидрографических работах применяют следующие основные способы определения планового положения промерных точек: без инструментальных засечек; с инструментальными засечками; с применением спутниковых систем координирования промеров.

При облегченном виде изысканий допускается проведение промеров глубин без координирования. В этом случае необходимо обеспечить равномерное движение промерного судна на галсе, а измерение глубин следует производить через равные интервалы времени. На плане измеренные глубины наносятся равномерно по длине галса от уреза до уреза между начальной и конечной точками. Такой способ удовлетворяет требованиям рекогносцировочного промера.

 Более точные материалы получаются при координировании промеров с помощью геодезических инструментов. При определении местоположения промерного судна можно пользоваться либо одним инструментом – мензулой, либо двумя – мензулой и теодолитом. В первом случае при подготовке к промеру необходимо предварительно разбить на местности положение промерных галсов. В ходе промера глубин на этих точках устанавливаются специальные створные вехи, по которым ориентируется судоводитель. Тогда плановое положение промерного судна в любой момент времени будет определяться пересечением двух линий: направлением галса и направлением визирной оси кипрегеля в момент засечки с одного из пунктов планового обоснования М с известными координатами (рис. 5.5, а). После прохождения галса промерным судном створные вехи устанавливаются на следующем галсе.

В случае использования двух геодезических инструментов при координировании не требуется предварительной разбивки промерных галсов на берегу. Теодолит и мензула устанавливаются на двух пунктах обоснования с известными координатами соответственно в точках Т и М (рис. 5.5, б).

Промерное судно в этом случае движется по свободным галсам. Его плановое положение в момент измерения глубины определяется пересечением двух линий – визирных осей теодолита и кипрегеля. Свои засечки наблюдатели на берегу производят одновременно по команде, подаваемой с промерного судна по рации или с помощью флагов-отмашек.

В последние годы все большее применение на водных изысканиях находят спутниковые системы координирования промеров. Наибольшее распространение получили приборы, работающие в глобальной позиционной системе (GPS), принадлежащей США, и системы ГЛОНАСС, находящейся в ведении России. Такая система содержит обычно два спутниковых приемника, один из которых располагается на движущемся промерном судне, а другой, называемый базовой станцией, на берегу.

С береговой станции осуществляется непрерывная передача собственных координат на бортовой комплекс, что позволяет значительно повысить точность определения планового положения промерного судна на водной акватории. Применение таких систем наиболее эффективно при выполнении промеров глубин на широких водных пространствах – на озерах и водохранилищах. Их использование позволяет уменьшить численность промерного отряда, что приводит к резкому повышению производительности труда на водных изысканиях.

Измерение глубин можно производить наметкой, лотами и эхолотом.

Наметка представляет собой деревянный шест круглого сечения длиной 3.5-6 м и диаметром 5-6 см. На наметке краской наносится разметка с дециметровыми делениями, считая от ее нижнего конца – пятки. Пятка снабжена металлическим башмаком, предохраняющим наметку от продавливания в грунт при измерении глубины. Наметкой измеряют глубины до метров с точностью до 5 см. В настоящее время при измерении глубин наметки используются редко, так как это требует применения ручного труда.

Лоты бывают ручные и опускаемые с лебедки (рыбалоты). Ручной лот состоит из груза массой до 4 кг, подвешенного на капроновом или пеньковом канате (лотлине) диаметром 6-8 мм и длиной до 30 м. Лотлинь размечается на деления через 0.1-0.2 м.

Лот применяется для промеров на озерах и водохранилищах. Точность этого способа ниже и составляет 0.1-0.2 м. Снижение точности измерений происходит за счет прогиба каната и сноса лота течением.

При больших глубинах и скоростях течения более 1 м/с для измерения глубин используется рыбалот. Он состоит из металлического груза обтекаемой рыбовидной формы массой до 30 кг и стального маркированного троса. При измерении глубины груз опускается на дно и в момент касания считывается значение глубины по тросу или по счетчику, установленному на лебедке. Затем груз немного приподнимается и поддерживается в подвешенном состоянии до следующей промерной точки.

Эхолот основан на использовании гидроакустического способа измерения глубин. Сущность измерения заключается в определении времени прохождения ультразвукового сигнала от источника излучения до дна водоема и обратно к приемнику (рис. 5.6).

Рис. 5.6. Схема измерения глубин эхолотом:

И – излучатель; П – приемник ультразвуковых сигналов

Ультразвуковой сигнал излучается в виде узкого направленного пучка и способен отражаться от твердых поверхностей. Таким образом, зная расстояние между излучателем и приемником и скорость распространения ультразвука в воде, измеряемая глубина может быть найдена по формуле

 (5.1)

где: С – скорость распространения ультразвука в воде;

t – время прохождения сигнала от излучателя до приемника;

l – база прибора – половина расстояния от излучателя до приемника.

 

Конструкция эхолотов одного типа позволяет непрерывно измерять глубины по ходу движения промерного судна и автоматически записывать их в масштабе на бумажную ленту – эхограмму. На эхограмме специальными оперативными отметками указываются глубины, измеряемые в момент координирования планового положения промерного судна. В современных эхолотах другого типа измеряемые глубины представляются на индикаторе в цифровом виде, а их хранение обеспечивается на различного рода магнитных носителях – лентах или дисках. Точность измерения глубин эхолотом в диапазоне 0.2-20 м составляет 0.05-0.1 м.

На рис. 5.7 показана функциональная схема современного промерного комплекса для производства водных изысканий.

 

Рис. 5.7. Функциональная схема промерного изыскательского комплекса